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1. Introduction

The one variable secant method, for the solution of equations,

has been known for a very long time as being computationally more

efficient than Newton's method. Among the extensions of this method to

n-dimensional problems, those proposed by Wolfe [8 ] and Barnes [2 ],

are among the most interesting ones, because, when they do converge,

they ate emutpatktiaQn na &a-.si-t- ja sb ltic $hiF Ni-;¢'

method (see, for example, the discussion in [5 ]). However, as can be

seen from the counter examples quoted in [5 ], these methods may not

converge. More recently, Ritter [7 ] proposed a new algorithm for

function minimization, combining Goldstein's gradien m

with a secant type method, which contains an angl st (betPwenA
-\,=3

direction of descent and the gradient) to ensure ~Cnvert" e'e. hisir

angle test depends on a parameter that may be qui _ifDfi1'it to s ct

in advance. A bad selection results in the algorith,~. te

gradient mode most, if not all the time.
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In this paper we present a new gradient-secant algorithm for

unconstrained optimization problems of the form min {f(z) I z E Rn}.

It differs from Ritter's method both in the fact that it does not use

an angle test and in the manner in which it updates the approximate

hessian. Roughly speaking, in solving a problem, this algorithm uses

Armijo gradient method iterations [ 1] until it reaches a region where the

Newton method is more efficient than the gradient method. Then it

switches over to a secant form of operation. Under the assumption that

f is continuously differentiable, we have shown that any accumulation

point z, of a sequence constructed by this algorithm, must be

stationary. Under the stronger hypothesis that f is twice continuously

differentiable and strictly convex, we were able to show that any

sequence {z.} constructed by our algorithm converges superlinearly
i=O

to the unique minimizer z of f(.), with rate Tz-, where T - is tne unique

n+1- n
positive root of t t - 1 = O, i.e. that for some 0e (0,1) and

i

some R E(0,), II zi - z II <R n , i=O, 1, 2, .. . Both theoretical

considerations and our computational experiments indicate that this new

algorithm is considerably faster than the Newton method, and Lootsma

[4]. reports that on many problems Newton's method is superior to

a number of conjugate direction and quasi-Newton methods. It is

therefore not unrealistic to hope that, as experience with the new method

accumulates, it will'emerge as one of the most efficient methods for

the solution of certain classes of unconstrained optimization problems.
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2. The Secant Method.

Consider the problem

1. min{f(z) z E IRn }

To begin, we shall make only the following minimal assumptions.

2. Assumptions: (a) f is continuously differentiable and, (b) f is bounded

from below.

Throughout this paper, when we say that an algorithm is convergent,

we mean that every limit point z of a sequence it constructs in solving

(1) satisfies f(z) = 0.

The assumptions (2) will suffice to prove that the algorithm we are

about to. state is convergent. We shall later show, under stronger

assumptions, that it converges superlinearly and establish a bound on

We shall use the notation

3. g(z) E Vf(z), z e IRn'.

4. Algorithm:

Data: 6 > 0, a E (0, ), ( E (0,1), b > 0 (large)' ,g > 2,z0 IR

th
H a symmetric positive definite n x n matrix,ej = j- column of n x n

unit matrix, j = 1, 2, .., n.

Step 0: Set i = 0, j = 0, p = 0, v0 = 6, H H H. Compute g(z0) and

set Y0 = v0 = j g(z0 ) 2'

Step 1: Compute g(zi). Stop if g(zi) = 0.

Step 2: If j < n, set'j = j + 1 and go to step 3; else-set j = 1 and

t The purpose of the constant b is to make the algorithm use a steepest

descent step whenever Hi, the current approximation to the hessian of f(-)

is "too close" to being singular. A lower bound on b is b > 2 JJ H(z)-

for all z which are local minimizers of f(-). In practice, setting

b = c does not appear to destroy the convergence of the algorithm.
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go to step 3.

Step 3: Set ei = min{6,vi}.

Step 4: Compute g(zi + ei e.).

Step 5: Replace hj, the jt column of H, by

5. A. =- [g(z
i

+ E ej) - g(zi)]
1. igizi
1

to obtain a new matrix

Step 6: If IIg(zi) II <

Step 7: If H1 exists
1

H, and set H. = H.
1,

p , go the step 7; else set W = zi go to step 15.

and II H 1 il < b, compute
1

6. v.= H g(zi)

and go to step 8; else set w = z. and go to step 15.

Step 8: If (v., g(z i) ) < 0, go to step 9; else set w = z.

Step 9: Set k = 0.

Step 10: Compute f(z
i
- 8kv.).

Step 11: If

and go to

7. f(zi -k v.) - fkzi) < 0

go to step 13; else go to step 12.

Step 12: If k < 2, set k = k + 1 and go to step 10; else go. to step 15.

Step 13: Compute g(Zi - ). If g(i ) = 0,

set zi+ = - vi and stop.i+l l 1

Step 14: If

k2
set zi+ = - set = l g(zi+l) 2, set p = p+l, set i 

=
i-+

-1 -1
t Note that since H differs from H in only one column,H. = H

-1

new old 1 new

can be obtained from H-1od by means of the standard updating formula.
Hold

-4-



and go to step 2; else set w = zi - 8 vi and go to step 15.

Step 15: Compute the smallest integer s .> 0 such that
1-

S. S.

9. f(zi -8 1 g(zi)) - f(zi) < - II g(zi) II
S.

and set y = z. - 8 g(zi).

Step 16: If f(y) < f(w), set zi+l = y, set i = i+l, and go to step 1;

else set z = w, set i = i+l and go to step . ni+l

Since when g(zi ) # 0, one can always find a finite s. such that (9)

is satisfied, algorithm (4) is obviously well defined.

10. Theorem: Suppose that the assumptions (2) are satisfied and that

algorithm (4) has constructed an infinite sequence {zi}i=O. Then every

limit point z* of {zi i=0 satisfies g(z*) = 0.

Proof: Suppose that z* is a limit point of {zi}, that g(z*) # 0 and that

Now there are two possibilities.

(i) There exists an infinite subset K' C K such that for all i E K',

either

S .

11. Z = z - 1 g(zi)

or

zi+l = Zi - k v.
i+l 1 1

12.

and

13. f(z
i - S vi) < f(zi - 8 ig(zi).

Since g(z*) i 0 and z. - z* for i C K', it follows from the discussion in
1
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sec. 2.1 of [ 6] (see theorem 22 and algorithm 35) that there exists

a 6(z*) < 0 and an integer N such that

14. f(z i+l) - f(zi ) < 6 (z*) < 0 for all i > N, i E K'.

But K' is an infinite subset, and {f(zi)}i= is a monotonically

decreasing sequence, hence (14) contradicts the assumption that f(z) is

bounded from below. Thus, if (i) holds, then g(z*) = 0.

The second possibility is

(ii) There exists an infinite subset K" C K such that

15. Zi+1 z. - kv for all i E K"

and

16. Ij g(zi+l) 2 < (1-28 a) g (z) Ij for all i E K"

In this case the sequence {yp is infinite, monotonically decreasing and

bounded from below by zero. Hence y + y* > O. Now, since whenever (15)

and (16) take place, y = .II g(zi+) 112, for some integer p, and
p-I i+l

y > I g(z ) 2 'y < g 112 < - g(z) <I'2. Hence, since
%ll ¥- Yp+llj g(zi)j

z. - z* for i E-K", and since g(-) is continuous by assumption (2),

there exists an infinite subset K"' of the positive integers such that

17. Yp+l - Yp < -
-

B a I g(z*) II2 for all p E K".

But (17) contradicts the fact that yp + y* > O.

Hence we must have g(z*) = O. n

The following result is a direct consequence of theorem (10).

18. Corollary: Algorithm (4) is convergent whenever problem (1) satisfies
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the assumptions (2),

The following corollary can be deduced from theorem (10), which

implies that g(zi ) ~ 0 as i - ? and hence that zi+l Zi * 0 as i 9 I,

and theorem (1.3.66) in [ 6].

19. Corollary: Suppose that the sequence {z I described in theorem

(10) is compact and that the function f(,) has only a finite number

of stationary points, then there exists a z* E Rn such that zi Z z*

and g(z*) 0. 

We are now ready to establish the rate of convergence of algorithm

(4). For this purpose we shall need to assume the following.

20. Assumption: The function f is (a) three times continuously differentiable

and, (b) strictly convex.

Note that under assumption (20), the level sets of f(') are

compact and there exists only one point z ( the minimizer of f(z)

over II ), which satisfies g(z) O. Hence., by theorem (10) and

corollary (19), whenever assumption (20) is satisfied, any sequence

{zi}a constructed by algorithm (4) converges to the unique mini-

mizer z of f(-).

21. Lemma: Suppose that assumption (20) is satisfied and that algorithm (4)

has constructed an infinite sequence {zii0 converging to z, the

minimizer of f(.), Then there exists 0 < M < < such that

i-n

22. II H(zi) i Hi 1 < M z II for i 0= , 1, 2,

where Hi is as defined in the algorithm and



2

23. H(z) a z E R
az

Proof: Since (20) (b) is satisfied, the level set

C(z) = {z I f(z) < f(z )} is compact and convex and hence, since (20) (a) is

satisfied, there exists a Lipshitz constant L < ~ such that for all

x, y E C(z),

24. II. H(x) - H(y) II < L II x - y II

(Note that zi}i=0 is contained in C(z0 )). Now, without loss of

generality, suppose that the jth column of Hi(j E {1, 2, ..., n}) is

25. i [g(zi
k
+ Ei-k ej) - g(zik)] where k E {0, 1, 2, .. , n-l}.

Ci-k i-k ' ' ''

Then, making use of (24), of the mean value theorem, and the fact that

ik < ki Zi-k-l II by construction, we obtain that the magnitude

th
of the difference between the jth columns of H(zi) and H. satisfies

26. I H(zi) e - + c ej) - g(z zi )]
1 EiHk i-k i-k i-k

= II f [H(zi) - H(z + ti e)] e. dt IIi-k i-k

0

II Zi- ik t II dt

1

_Zi z-k zik i-k-l )
0
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< L(1 z-zI I + 3 II z II + 1 IIik-z ll)-L( i 2. -51 Zi-k 2 i-k-1 )

The existence of a constant M satisfying (22) now follows from (26)

and the triangle inequality for norms, used in conjunction with the

addition and subtraction of terms in the right hand side of (6). n

27. Lemma: Suppose that assumption (20) is satisfied, that b > 2 II H(z) 1

and that the algorithm (4) has constructed a sequence {zi}i =

Then there exists an integer N such that for all i > N,

z i + H= H- 1

i+l. Zi - i g(z i) .

Proof: First, since zi - z, the global minimizer of f(-), and (22)

holds, it follows from the perturbation Lemma (2.3.2) in [ 5] that

there exists an integer N' such that for all i > N' H
-

exists and is

positive definite and II H
-
1 il < b. Hence, for all i > N'. the test in

step 8 of the algorithm, i.e., (vi, g(z
i
) )= -<(l g(zi), g(zi ) ) < 0,

is satisfied for all i > N' and hence the computation proceeds to step 9.

Next, applying the second order Taylor expansion, we obtain (with

-1
vi = Hi g(zi))

28. f(zi Hi g(zi)) f(zi)

- 1

H -1
-(g(zi), H i g(z i ) ) + (l-t) [(H g(

1
z H(z) H g(z.) 

+('g~z ), H g(zi)' H(zi-tvi }til g(zi) ) dt

1.
-(

i )
- 'i) i i l H1

(g= z H-1 g~z ((-t) H. g(z i H( ) H- g(z.) )' 

~
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+ (Hi g(zi),(H(zi -t vi) - H(z)) Hi g(zi ) )] dt

-1 -1 g i
Hence, since v

i
= H

-

g(zi) + 0 as i + o (because H 1- H(z)
-

1 1 ' 1

and g(zi ) + 0 causing H(zi - vi) - H(z) + O uniformly for t E [0,1]

as i + 0), and since H(z) H
-

-+ I, the unit matrix, as i + A, it follows
1

from (28) that there is an integer N" > N' such that

29. f(z Hi g(zi)) - f(zi) < 0 for all i > N",

i.e. the test in step 11 of the algorithm is satisfied with k = 0 for all

i > N".

Finally, consider 2 g(z) 2. Since f is three times continuously

differentiable,

2
30. (z) = H(z.) H(z) + W(z)

az' =

where W(z) is a continuous nxn matrix which satisfies W(z) = 0. Hence,

for all i > N", expanding I1 g(zi-H.i g(zi))l2 to second order terms

according to the Taylor formula, we obtain

31. II g(zi -H. 1 g2 I (zi 2 2 < H(zT g(zi) 2 < H(zi)) )g(zi-H g(z.))I i) }

1

H-1 -l

+ 2 |(l-t)[<Hi g(zi), H(zi i i-tv ) Hi g(zi) )

1 g(zi)' Hi g(zi ) 

Where v. = H
-

g(zi). Setting Hi(t) = H(zi-tvi) and Wi(t) = W(zl-tvi),

t E'[0,l], (31) yields
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32. i ~z 2 g ,2 - ( g(zi)' H(zi) H:1 g(
z
i

) )32. g(zivi 2 II g(zi) II2 -2 1

II'pg(zi) 112

1

+ (-t i(t) Hi 1 g(zi)I 2 +

0

(Hi g(zi), Wi(t) Hi g(zi ) dt

Since v. + 0 as i + m and z. + z as i + A, Wi(t) + 0 as i + A,

uniformly in t E [0,1] and similarly, Hi(t) Hi -+ I as i + o, uniformly in
1

t E [0,1]. Hence the term in the right hand side of (32), multiplied

by 1 g(zi) 112 tends to zero as i + X and therefore there exists an integer

N"'> N" such that the test (8) is satisfied for k = 0 for all i > N"'.

Now, since g(zi) + 0 as i + w, there exists an integer N > N"' at

which the test in step 6, viz.,11g(zi) 112 < p will be satisfied. Then,

for all i > N, zi+l = Zi - Hi g(Zi) which completes our proof. M

33. Theorem: Suppose that assumption (20) is satisfied and that algorithm

co

(4) has constructed a sequence {zi}i =
0

Then

1/i i=i

34. 0 < lim sup z. - z II <

i-to

where T is the unique positive root of the equation t t - 1 0
n

and z is the unique minimizer of f(-) (i.e., the R-order of algorithm (4)

is Tn, where R-order is defined by (9.2.5) in [ 5]).

Proof: Let N be an integer such that for all i > N
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-1
35. zi+l = Zi - Hi g(zi )

By Lemma (27), such an N exists. Then since H(-) is Lipshitz

continuous on C(z0 ), for all i > N (since g(z) = 0)

36. Zi+l z II = II(zi-z) - Hi (g(zi)-g(z))1

1

0 II

0

(I-H H( t ( ) (1IH H1d- 1Zi ))(i)d~

II H
-
1 II I(Hi-H(z+t(zi-z ))Il Iz. - z Ildt

1

11 -1 

< II H-1 II
i-- 1

1

(ri Hi-.-HC(7A II + II H(z,) - H(z+t(..--))l 1 liz.-zl ) dt

o

3_ 1 ' 1 1 2 1

0

1 

[lHi-H(zi) II + Lt II z.-z ] z- Ildt'

O

where L is the Lipshitz constant for H(-) on C(z0 ). Now making use of

Lemma (22) and the fact that Ii H-1 II is bounded for i> N

(since H1 + H(z)), we conclude from (36) that there exists constants
1

X > 0, j = 0; 1, 2, .., n-l, such that for all i > N
j

n

37. 11 zi+l - 1 < i11 z - z I2 A 11 z.=
j=o

- II..
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The desired result now follows from ( 7) and theorem (9.2.9) in [5 ].

38. Corollary: Under the conditions in theorem (33), any sequence {z } i=

constructed by algorithm (4) satisfies

n
39. lim sup I g(zi) n < 

i-i~o/

1/T i

40. lim sup [f(zi ) - f(z)] < 1
i-do

Proof: Since g(z) = 0,

1

41. II g(zi) I = II H(z +t(zi-
z

)) (zi-z) dt II

v

1 1

--< [ f I IHt(z+t(zi- II dt]t[ z
i
.- z i

0

< Q II zi-z I

where Q = sup {l1 H(z) II | z E C(z0)}. Relation (39) now follows from

1/T

(41), (34) and the fact that Q + 1 as i A.

Next, again since g(z) = 0,
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1

42. f(z) - f(z) (l-t)( (Z i-z),H(z+t(z -z)) ( )) dt

0

1

(l-t) Q i z. - z II dt

0

2 .

where Q is an upper bound on the eigenvalues of H(z) for z G C(z0 ).

1/2T

Relation (40) now follows from (42), (34) and the fact that (- ) -+ 1

as i + a. This completes our proof. n

we lottd"tfL-L Llhe 2i y Li6 we ii us_ - thF\

was three times continuously differentiable and strictly convex was in

the proof of lemma (27). At this point is is easy to show that lemma (27)

can also be proved under the weaker assumption that f(.) is only twice

continuously differentiable strictly convex and (24) holds. Thus suppose that

{zi}i = is any sequence such that z. + z as i + X and that

Yi- = Zi - Hi! g(zi) for all i > N, where N is such that H. exists

for all i > N. Then (37) applies and yields

n

'~43.- I - zy11 Z^. - z 1 11z zl 
j

- z .i, for all I > Ni+l z i z
j=O

Now, by the mean value theorem, since g(z) = 0,

1

44. 11 g(y +l ) II < II H(yil +s(Yi1 - z)l ds 1 Yi+l Z Z

0
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< Q I Ai
-<QIIYi+l- Z

n

< Q I] z.-z I Jl zi-j-z IZ.
- 1-3

j=0

where Q is as in (41).

Now,

45. U z.-z H II g(zi) > (z.-z, g(zi))

(-z, 'H(z +s (z.-z) (z -z))ds

O'

> Q II z.-z I[2 ,

where Q is as in (42). Hence for all i > N

46. 1 g(zi) > I z-z 

and therefore (44) yields

n

47. g ( {Q <l ziZj-z II} for all i > 
j=0

n

Since !l z._z ll 0 as i + ~ , we conclude that there exists an

j=0

integer N > N such that

1I g(yi+l) II < (1-2cB ) II g(zi) I2 for all i > N
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and hence that lemma (27) holds under the weaker assumption that f is

only twice continuously differentiable and strictly convex.

Conclusion

We have presented in this paper an efficient method for unconstrained

minimization. It should be clear from the development that the

assumptions used to establish rate of convergence can be relaxed from a

global statement to a local one, i.e.' as holding in a convex neighborhood

of a local minimum. It is also clear that one can construct several

other variants of the algorithm as, for example, by substituting a

conjugate directions method for the gradient method in the algorithm.

In some applications these alternative, more complex versions may be

preferred over the simplest one presented in this paper. -As long as one

.. ti..Ui .... fc tha ArmiJo gradiAnt mathod anly oihehr codvezgaiiL ii-

zation method, the convergence and rate of convergence theorems, presented

in this paper, remain valid.
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